Copied to
clipboard

G = C42.150D6order 192 = 26·3

150th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.150D6, C6.282- 1+4, C6.1322+ 1+4, (C4×D12)⋊47C2, C4⋊C4.207D6, C42.C26S3, C423S39C2, C4.D1237C2, D6⋊Q835C2, Dic35D436C2, D6.11(C4○D4), C12⋊D4.12C2, D6.D434C2, C2.57(D4○D12), Dic3.Q833C2, (C2×C6).236C24, D6⋊C4.10C22, (C4×C12).196C22, (C2×C12).188C23, (C2×D12).164C22, Dic3⋊C4.52C22, C4⋊Dic3.314C22, C22.257(S3×C23), (C22×S3).102C23, C2.29(Q8.15D6), C38(C22.33C24), (C2×Dic3).258C23, (C2×Dic6).180C22, (C4×Dic3).143C22, (S3×C4⋊C4)⋊36C2, C4⋊C4⋊S334C2, C2.87(S3×C4○D4), C6.198(C2×C4○D4), (C3×C42.C2)⋊9C2, (S3×C2×C4).126C22, (C2×C4).80(C22×S3), (C3×C4⋊C4).191C22, SmallGroup(192,1251)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.150D6
C1C3C6C2×C6C22×S3S3×C2×C4S3×C4⋊C4 — C42.150D6
C3C2×C6 — C42.150D6
C1C22C42.C2

Generators and relations for C42.150D6
 G = < a,b,c,d | a4=b4=1, c6=d2=a2b2, ab=ba, cac-1=dad-1=a-1b2, cbc-1=b-1, dbd-1=a2b, dcd-1=c5 >

Subgroups: 576 in 218 conjugacy classes, 93 normal (91 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, D6, D6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic6, C4×S3, D12, C2×Dic3, C2×C12, C22×S3, C2×C4⋊C4, C4×D4, C4⋊D4, C22⋊Q8, C22.D4, C42.C2, C42.C2, C422C2, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C4×C12, C3×C4⋊C4, C2×Dic6, S3×C2×C4, C2×D12, C22.33C24, C4×D12, C423S3, Dic3.Q8, S3×C4⋊C4, Dic35D4, D6.D4, C12⋊D4, D6⋊Q8, C4.D12, C4⋊C4⋊S3, C3×C42.C2, C42.150D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2+ 1+4, 2- 1+4, S3×C23, C22.33C24, Q8.15D6, S3×C4○D4, D4○D12, C42.150D6

Smallest permutation representation of C42.150D6
On 96 points
Generators in S96
(1 19 46 49)(2 14 47 56)(3 21 48 51)(4 16 37 58)(5 23 38 53)(6 18 39 60)(7 13 40 55)(8 20 41 50)(9 15 42 57)(10 22 43 52)(11 17 44 59)(12 24 45 54)(25 73 67 85)(26 80 68 92)(27 75 69 87)(28 82 70 94)(29 77 71 89)(30 84 72 96)(31 79 61 91)(32 74 62 86)(33 81 63 93)(34 76 64 88)(35 83 65 95)(36 78 66 90)
(1 86 40 80)(2 81 41 87)(3 88 42 82)(4 83 43 89)(5 90 44 84)(6 73 45 91)(7 92 46 74)(8 75 47 93)(9 94 48 76)(10 77 37 95)(11 96 38 78)(12 79 39 85)(13 26 49 62)(14 63 50 27)(15 28 51 64)(16 65 52 29)(17 30 53 66)(18 67 54 31)(19 32 55 68)(20 69 56 33)(21 34 57 70)(22 71 58 35)(23 36 59 72)(24 61 60 25)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 31 7 25)(2 36 8 30)(3 29 9 35)(4 34 10 28)(5 27 11 33)(6 32 12 26)(13 79 19 73)(14 84 20 78)(15 77 21 83)(16 82 22 76)(17 75 23 81)(18 80 24 74)(37 64 43 70)(38 69 44 63)(39 62 45 68)(40 67 46 61)(41 72 47 66)(42 65 48 71)(49 85 55 91)(50 90 56 96)(51 95 57 89)(52 88 58 94)(53 93 59 87)(54 86 60 92)

G:=sub<Sym(96)| (1,19,46,49)(2,14,47,56)(3,21,48,51)(4,16,37,58)(5,23,38,53)(6,18,39,60)(7,13,40,55)(8,20,41,50)(9,15,42,57)(10,22,43,52)(11,17,44,59)(12,24,45,54)(25,73,67,85)(26,80,68,92)(27,75,69,87)(28,82,70,94)(29,77,71,89)(30,84,72,96)(31,79,61,91)(32,74,62,86)(33,81,63,93)(34,76,64,88)(35,83,65,95)(36,78,66,90), (1,86,40,80)(2,81,41,87)(3,88,42,82)(4,83,43,89)(5,90,44,84)(6,73,45,91)(7,92,46,74)(8,75,47,93)(9,94,48,76)(10,77,37,95)(11,96,38,78)(12,79,39,85)(13,26,49,62)(14,63,50,27)(15,28,51,64)(16,65,52,29)(17,30,53,66)(18,67,54,31)(19,32,55,68)(20,69,56,33)(21,34,57,70)(22,71,58,35)(23,36,59,72)(24,61,60,25), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,31,7,25)(2,36,8,30)(3,29,9,35)(4,34,10,28)(5,27,11,33)(6,32,12,26)(13,79,19,73)(14,84,20,78)(15,77,21,83)(16,82,22,76)(17,75,23,81)(18,80,24,74)(37,64,43,70)(38,69,44,63)(39,62,45,68)(40,67,46,61)(41,72,47,66)(42,65,48,71)(49,85,55,91)(50,90,56,96)(51,95,57,89)(52,88,58,94)(53,93,59,87)(54,86,60,92)>;

G:=Group( (1,19,46,49)(2,14,47,56)(3,21,48,51)(4,16,37,58)(5,23,38,53)(6,18,39,60)(7,13,40,55)(8,20,41,50)(9,15,42,57)(10,22,43,52)(11,17,44,59)(12,24,45,54)(25,73,67,85)(26,80,68,92)(27,75,69,87)(28,82,70,94)(29,77,71,89)(30,84,72,96)(31,79,61,91)(32,74,62,86)(33,81,63,93)(34,76,64,88)(35,83,65,95)(36,78,66,90), (1,86,40,80)(2,81,41,87)(3,88,42,82)(4,83,43,89)(5,90,44,84)(6,73,45,91)(7,92,46,74)(8,75,47,93)(9,94,48,76)(10,77,37,95)(11,96,38,78)(12,79,39,85)(13,26,49,62)(14,63,50,27)(15,28,51,64)(16,65,52,29)(17,30,53,66)(18,67,54,31)(19,32,55,68)(20,69,56,33)(21,34,57,70)(22,71,58,35)(23,36,59,72)(24,61,60,25), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,31,7,25)(2,36,8,30)(3,29,9,35)(4,34,10,28)(5,27,11,33)(6,32,12,26)(13,79,19,73)(14,84,20,78)(15,77,21,83)(16,82,22,76)(17,75,23,81)(18,80,24,74)(37,64,43,70)(38,69,44,63)(39,62,45,68)(40,67,46,61)(41,72,47,66)(42,65,48,71)(49,85,55,91)(50,90,56,96)(51,95,57,89)(52,88,58,94)(53,93,59,87)(54,86,60,92) );

G=PermutationGroup([[(1,19,46,49),(2,14,47,56),(3,21,48,51),(4,16,37,58),(5,23,38,53),(6,18,39,60),(7,13,40,55),(8,20,41,50),(9,15,42,57),(10,22,43,52),(11,17,44,59),(12,24,45,54),(25,73,67,85),(26,80,68,92),(27,75,69,87),(28,82,70,94),(29,77,71,89),(30,84,72,96),(31,79,61,91),(32,74,62,86),(33,81,63,93),(34,76,64,88),(35,83,65,95),(36,78,66,90)], [(1,86,40,80),(2,81,41,87),(3,88,42,82),(4,83,43,89),(5,90,44,84),(6,73,45,91),(7,92,46,74),(8,75,47,93),(9,94,48,76),(10,77,37,95),(11,96,38,78),(12,79,39,85),(13,26,49,62),(14,63,50,27),(15,28,51,64),(16,65,52,29),(17,30,53,66),(18,67,54,31),(19,32,55,68),(20,69,56,33),(21,34,57,70),(22,71,58,35),(23,36,59,72),(24,61,60,25)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,31,7,25),(2,36,8,30),(3,29,9,35),(4,34,10,28),(5,27,11,33),(6,32,12,26),(13,79,19,73),(14,84,20,78),(15,77,21,83),(16,82,22,76),(17,75,23,81),(18,80,24,74),(37,64,43,70),(38,69,44,63),(39,62,45,68),(40,67,46,61),(41,72,47,66),(42,65,48,71),(49,85,55,91),(50,90,56,96),(51,95,57,89),(52,88,58,94),(53,93,59,87),(54,86,60,92)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C···4H4I4J4K4L4M4N6A6B6C12A···12F12G12H12I12J
order122222223444···444444466612···1212121212
size11116612122224···466121212122224···48888

36 irreducible representations

dim111111111111222244444
type++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D6D6C4○D42+ 1+42- 1+4Q8.15D6S3×C4○D4D4○D12
kernelC42.150D6C4×D12C423S3Dic3.Q8S3×C4⋊C4Dic35D4D6.D4C12⋊D4D6⋊Q8C4.D12C4⋊C4⋊S3C3×C42.C2C42.C2C42C4⋊C4D6C6C6C2C2C2
# reps111111412111116411222

Matrix representation of C42.150D6 in GL6(𝔽13)

500000
050000
000010
000001
0012000
0001200
,
800000
050000
0011900
004200
0000119
000042
,
010000
100000
008576
008371
007658
0071510
,
010000
100000
00101099
000304
009933
0004010

G:=sub<GL(6,GF(13))| [5,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,1,0,0,0,0,0,0,1,0,0],[8,0,0,0,0,0,0,5,0,0,0,0,0,0,11,4,0,0,0,0,9,2,0,0,0,0,0,0,11,4,0,0,0,0,9,2],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,8,8,7,7,0,0,5,3,6,1,0,0,7,7,5,5,0,0,6,1,8,10],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,10,0,9,0,0,0,10,3,9,4,0,0,9,0,3,0,0,0,9,4,3,10] >;

C42.150D6 in GAP, Magma, Sage, TeX

C_4^2._{150}D_6
% in TeX

G:=Group("C4^2.150D6");
// GroupNames label

G:=SmallGroup(192,1251);
// by ID

G=gap.SmallGroup(192,1251);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,219,268,675,570,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1*b^2,c*b*c^-1=b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽